## Test A: Chapter 5

Name $\qquad$

## Solve the problem.

1) Suppose that $h$ is continuous and that $\int_{-2}^{4} h(x) d x=2$ and $\int_{4}^{8} h(x) d x=-8$. Find $\int_{-2}^{8} h(x) d x$ and $\int_{8}^{-2} h(x) d x$
2) Suppose that g is continuous and that $\int_{4}^{7} \mathrm{~g}(\mathrm{x}) \mathrm{dx}=9$ and $\int_{4}^{9} \mathrm{~g}(\mathrm{x}) \mathrm{dx}=14$. Find $\int_{9}^{7} g(x) d x$ and Find $\int_{4}^{4} f(x) d x$.
3) Suppose that $f$ and $g$ are continuous and that $\int_{7}^{11} f(x) d x=-2$ and $\int_{7}^{11} g(x) d x=9$. Find $\int_{7}^{11}[5 f(x)+g(x)] d x$.

Find the average value over the given interval. SHOW ALL WORK.
4) $y=\frac{1}{x} ;[1, e]$

Find dy/dx.
5) If $y=\int_{x^{4}}^{1} 12 t^{5} d t$ find $d y / d x$
6) $y=\int_{\cos x}^{\sin x} \frac{1}{9-t^{2}} d t$ find $d y / d x$
7) If $\int_{1}^{3} f(x) d x=10$, find $\int_{1}^{3}(f(x)+5) d x$

Evaluate the definite integral using areas or antiderivatives. SHOW ALL WORK.
8) $\int_{-1}^{6} 6 d x$
9) $\int_{1}^{2}\left(2 x^{3}-6 x^{-2}\right) d x$

Evaluate the integral. SHOW ALL WORK.
10) $\int_{0}^{\pi / 2} 17 \sin x d x$
11) $\int_{0}^{1}\left(x^{4}-x^{\frac{1}{5}}\right) d x$
12) $\int_{\pi / 4}^{3 \pi / 4} 8 \sec \theta \tan \theta d \theta$
13) $\int_{1}^{2}\left(2 e^{x}-8 x^{-2}\right) d x$
14) $\int_{1}^{2} \frac{1-x}{x^{2}} d x$
15) The graph of the function, $f$, is given below with position defined as follows.
$g=\int_{0}^{t} f(x) d x$

a) Determine the relative minimum of g. Justify your answer.
b) Find the absolute maximum of $g$ on the interval [0, 10]? Justify your answer.
c) Determine when $g$ is concave down on the interval [0,10]? Justify your answers.
d) Determine the intervals where g is increasing. Justify your answer.
e) Write the equation of the tangent line of g at $\mathrm{t}=10$.

## Solve the problem.

16) Use the data below to approximate the area under the curve using Midpoint Riemann Sums with 3 sub-intervals.

| T | 0 | 2 | 4 | 6 | 8 | 10 | 12 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{P}(\mathrm{t})$ | 0 | 46 | 53 | 57 | 60 | 62 | 63 |

17) Let f be a function that is twice differentiabtefor all real numbers. The table gives values of f for s points in the closed interval $2 \leq x \leq 13$

| $x$ | 2 | 3 | 5 | 8 | 13 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $f(x)$ | 1 | 4 | -2 | 3 | 6 |

Use a trapezoid approximation to find $\int_{2}^{13} f(x)$

| $t$ <br> (minutes) | 0 | 12 | 20 | 24 | 40 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $v(t)$ | 0 | 200 | 240 | -220 | 150 |
| (meters per minute) |  |  |  |  |  |

Johanna jogs along a straight path. For $0 \leq t \leq 40$, Johanna's velocity is given by a differential function $v$. Selected values of $y(t)$, where $t$ is measured in minutes and $v(t)$ measured in meters per minute, are given in the table above.
A) Use the data in the table to estimate the value of $v^{\prime}(22)$
B) Approximate the value of $\frac{1}{40} \int_{0}^{40} v(t) d t$ using a right Riemann sum with four subintervals indicated in the table. Using correct units, explain the meaning of the definite integral $\frac{1}{40} \int_{0}^{40} v(t) d t$ in the context of the problem.
C) Bob is riding his bicycle along the same path. For $0 \leq t \leq 10$. Bob's velocity is modeled by $B(t)=t^{3}-6 t^{2}+300$, where $t$ is measured in minutes and $B(t)$ is measured in meters per minute. Find Bob's acceleration at time $t=4$.
D) Based on the model B from part (c), find Bob's average velocity during the interxal $0 \leq t \leq 5$.

Determine the intervals of Increase and Decrease. Then use this information to determine any Local Extrema. Justify your explanation
19) $f(x)=x^{3}-3 x^{2}-9 x+3$

At the given point, find the equation of the line that is tangent to the curve.
20) $x^{2}+y^{2}-2 x+4 y=8$, tangent at $(2,4)$
21) Find dy/dx when

$$
y=\frac{\sin (7 x)}{5 x}
$$

